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Symmetry-breaking instabilities of spatial parametric solitons
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We investigate the symmetry-breaking~temporal or transverse! instabilities of ~111!- and ~211!-
dimensional two-wave parametric solitons sustained through the interplay of diffraction and second-harmonic
generation.@S1063-651X~97!50911-1#

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.65.Ky
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For three decades optical spatial solitons confined in
transverse plane were commonly believed to be a preroga
of media with cubiclike nonlinearities@1#. A remarkable ex-
ception is the work carried out in Ref.@2#, where the possi-
bility to achieve diffraction-free propagation via thre
photon interactions in quadratic media~henceforth,
parametric solitons! was first pointed out. The field of qua
dratic solitons has acquired importance only recently@3#,
also stimulated by experiments in second-harmonic gen
tion ~SHG! in bulk media ~211 dimensions! and planar
waveguides~111 dimensions! @4#.

Since the parametric solitons are strictly speaking solit
waves ~the model equations are not integrable!, a crucial
issue is their stability. Two main types of instabilities can
distinguished:~i! longitudinal instability against perturba
tions that share the soliton symmetry@5#; ~ii ! symmetry-
breaking instabilities~reminiscent of modulational instabili
ties of plane-waves@6#!, that take place whenever th
solitons are embedded in a higher dimensional ‘‘space’’ w
respect to the subspace in which they are localized@7,8#. For
the former type of problem, stability criteria have been
cently developed@5#, through asymptotic techniques@9#:
both ~111!- and ~211!-dimensional parametric solitons a
stable in the largest portion of their existence domain in
parameter space. Moreover, the global stability~no collapse!
of ~211!- and ~311!-dimensional parametric solitons an
bullets is supported by the Liapunov-type stability analy
@10#. Conversely, the symmetry breaking of parametric s
tons is still an open issue, even though the problem has b
widely studied for cubic media@7#. Here we investigate the
stability of the whole one-parameter families of ground-st
planar SHG solitons. We anticipate that the developmen
the instability leads either to the formation of lattices
higher dimensional solitons, or to the complete disintegrat
~radiative decay! of the soliton. The transverse instability o
soliton stripes belongs to the former case, whereas the
namics of temporal instabilities of both~111!- and ~211!-
dimensional solitons depends on the dispersive regime.
results are of great importance for recent experiments
transverse pattern formation occurring via SHG@11,12#. In
particular, the filamentation of beams with strongly elliptic
cross sections~i.e., pseudostripe! was already observed@11#,
using nonsoliton input conditions~i.e., SHG from the funda-
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mental!. The plane-wave approach developed in Ref.@11#
accounts for the dynamics of SHG, whereas the effect
confinement~along the ellipse minor axis! was not analyzed.
Here we focus on the latter aspect, and show results wh
serve as a guideline for ongoing SHG experiments. We m
use of the usual model for SHG@3#, governing the interac-
tion of the field envelopesu1 at fundamental, andu2 at
second-harmonic frequency
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where¹25]X
21]Y

2, with X,Y[(x,y)/r 0 transverse coordi-
nates in units of the beam widthr 0 , Z[z/zd is the propaga-
tion distance in units of diffraction lengthzd5k1r 0

2, dk
[Dkzd5(k222k1)k1r 0

2 is the phase mismatch,s[k2 /k1 ,
T[(zduk19u)

21/2(t2z/V) is the normalized time in a frame
traveling at common group velocity V, k1,29
[]2k/]v2uv0,2v0

, g15sgn(k19), and g25sgn(k29)uk29/k19u.
Furthermore u1[A2zdxE1 , u2[zdxE2exp(iDkZ), where
uE1,2u2 are the intensities, and x[(v0 /c)@2/
(ce0nv0

2 n2v0
)] 1/2de f f . Two conserved quantities of Eqs.~1!

that play an important role in our analysis areH
5*2`

1`Hd dSW , N5*2`
1`Nd dSW , where SW 5(X,Y,T), Hd

5dkuu2u21 1
2 (u1

2u2* 1c.c.2u¹2u1u22u¹2u2u2/s1g1uu1Tu2

1g2uu2Tu2) and Nd5uu1u212uu2u2 are Hamiltonian and
photon flux density, respectively. Our conclusions rem
qualitatively valid when a weak spatial or temporal walk-o
term in Eqs.~1! contribute to break the soliton symmetry.

For cw light~i.e.,]/]T50), Eqs.~1! possess two types o
two-color bright solitary solutions trapped in the transve
plane: ~1! soliton stripes confined along one dimensio
say X; ~2! solitons with cylindrical symmetry. Both
constitute a one-parameter family of bounded so
tions u1[u1s5(m/As) x1(Amr) exp(imZ) and u2[u2s

5m x2(Amr) exp(i2mZ) ~with m positive for spatial bright
solitons @3#!, x1,2 being ~real! separatrix trajectories of the
R4959 © 1997 The American Physical Society
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equivalent mechanical systemx1,29 1(s/r)x1,28 52]V/]x1,2,
where the potentialV(x1 ,x2)52x1

22ax2
21x2x1

2, and the
prime stands ford/dr, with r5AmX, s50 for stripes~1! or
r5Am(X21Y2), s51 for cylindrical solitons~2!. Note that
the normalized soliton profiles are determined only by
normalized parametera[s(22dk/m), whereas the stabil
ity depends on boths anda @5#. We investigate symmetry
breaking instability of the parametric solitons, looking f
exponentially growing perturbationsa1,2 of the fieldsu1s,2s

in the form u15m/As@x1(r)1a1#exp(imZ), u25m@x2(r)
1a2]exp(i2mZ). From Eqs.~1! we obtain the following lin-
ear equations for the perturbations:

2 i
da1

dz
5

1

2 S r 1D2b1

]2

]t2D a12a11x1a21x2a1* ,

~2!

2 is
da1

dz
5

1

2 S r 2D2b2

]2

]t2D a22aa21x1a1 ,

where r 15r 2[sgn(m)51, b1[sgn(m)g1 , b2
[sgn(m)sg2 , and we introduced the variablez5mZ and
the transverse LaplacianD5]j

21]h
2 , with (j,h,t)

[Aumu(X,Y,T). We consider periodic perturbations, an
single out three different cases of physical relevance:~a!
a1,25@e r1,2(j)1 i e i1,2(j)#cos(Vh) with b1,250 correspond-
ing to a transverse instability of a parametric soliton stripe
a bulk medium, usually observable in quasi-cw experime
@11#; ~b! a1,25@e r1,2(j)1 i e i1,2(j)#cos(Vt) with ]h

2→0, de-
scribing temporal instabilities of one-dimensional solito
propagating in a planar waveguide with power densit
LeuE1,2u2, Le being the usual effective width alongY. In this
case the linear confinement alongY prevents the transvers
instability ~a! from occurring; ~c! a1,25@e r1,2(r,f)
1 i e i1,2(r,f)#cos(Vt) describing temporal instabilities of~2
11!-dimensional solitons in cylindrical coordinates~r,f!.
Finally, note that for cw or quasi-cw soliton stripes in bu
the transverse~a! and temporal~b! instabilities might in prin-
ciple compete.

Substituting these expressions ofa1,2 in Eqs.~2!, we ob-
tain the following ~434! real eigenvalue problem for th
vectore[(e r ,e i)

T with e r ,i[(e1r ,i ,e2r ,i)
T:

S 0 2M 2

M 1 0 D e2lI 4e50;M 65S L16x2 x1

x1 L2D ,

~3!

whereI 4[diag(I 2 ,I 2), with I 2[diag(1,s), andL1,2 are lin-
ear operators that depend on the specific problem~a!–~c!.
From Eq. ~3!, we obtain the decoupled probleml2e r5
2I 2

22M 2M 1e r ~and the adjoint problem fore i) that must be
solved for unstable~with positive real part! eigenvaluesl.
To this end, we first construct the whole families of solit
profilesx1,25x1,2(r;a), solving the one-dimensional poten
tial equations by means of the relaxation method@13#. Then,
we solve Eq.~3! by means of the inverse iteration metho
@13# to find the spectral dependency of the gaing
5g(V;a)[Re@l# associated with bounded eigenfunctio
which fix the spatial shape of the growing perturbations. B
low we report results obtained fors'2 ~or uDku/k1!1).
e

n
ts

s

-

Let us consider firstthe transverse stripe instability@case
~a!#, for which we obtainL1[ 1

2 (]j
22r 1V2)21 and L2

[ 1
2 (]j

22r 2V2)2a. The spectral gaing(V) is shown in Fig.
1~a! as a function ofa. In Fig. 1~b! we show the eigenfunc
tion profiles~their absolute vertical scale is arbitrary!, super-
imposed to the soliton profiles fora54. Although Eq.~3!
admits both symmetric and antisymmetric eigensolutio
e~j!, the transverse instability gaing is always associated
with the symmetric branch~this conclusion is also consisten
with our asymptotic analysis for smallV!.

Explicit results can be obtained when the soliton is ava
able in closed form, i.e.,x1 /A25x25(3/2)sech2 (j/A2) for
a51. For b15b2 (L15L2), the bifurcation point~i.e.,
g50! in Eq. ~3! yields the instability spectral range 0,V
,Vc where the cut-off frequencyVc5A5/2. Moreover, in
the limit V!1, Eq.~3! is fulfilled by the asymptotic expres
sion g5aV with a5(r 112r 2)1/2@2(122s)2I s1(1
1s)2#21/2 with I s5*2`

1` f (x)sech2(x) dx.20.15, f (x) be-
ing a solution of the equationf 924 f 26 f sech2 (j)
5sech2 (j). This result confirms that the symmetric bran
requiresr 112r 2.0 for s'2.

Once established that the soliton stripes are transvers
unstable, a crucial issue is their long-range evolutio
Whenever the eigenfunction profiles follow those of the be
shaped soliton, the dynamics of the instability process sh
no significant changes along the trapping dimension and
mains essentially one dimensional. Under these condition
is reasonable to expect qualitative similarities~e.g., recur-
rence! with the evolution for modulational instability o
plane waves. For instance, this occurs in cubic media@14#,
where recurrent or quasirecurrent plane-wave evolutions
place@15#. In SHG, however, the problem of long-range ev
lutions of plane waves is complicated by the large numbe
effective frequency modes, and henceno similarities with
solitons can be envisaged. Here we investigate the nonlinea
stage of soliton symmetry breaking by integrating nume
cally Eqs. ~1! with the initial condition u1,2(X,Y,Z50)
5u1,2s(X)1 ē (X)cos(VYY), whereVY[AmV and the seed
ē (X) is a Gaussian-like perturbation with peak amplitu
ē (0)2'1022 u1,2s

2 (0).
A typical result, obtained at phase matchingdk50 ~a54!

FIG. 1. ~a! Spectral features of the transverse instability gaing
for the stripe family parametrized bya ~s52!; ~b! Eigenfunctione r

~solid! and soliton~dashed! amplitude profiles fora54 (dk50).
The thick and thin curves correspond to the fundamental and
monic fields, respectively.
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is shown in Fig. 2: the stripe breaks up into a periodi
sequence of spots, forming a lattice of trapped waves, wh
are naturally expected to be~211!-dimensional solitons@Fig.
2~a!#. We verified this conjecture by drawing in Fig. 2~b! the
evolutions of the contributions to the invariants, namelyN
5*2`

1`*
2Yp/2
Yp/2 Nd dYdX andH5*2`

1`*
2Yp/2
Yp/2 Hd dYdX related

to any single spot within one periodYp52p/VY . As the
instability develops, the spots try to evolve toward the sta
state of the system, radiating part of the energy alongX ~i.e.,
N andH decreases!. This behavior is allowed whenever th
existence curve of the stripe family~dotted curve! lies in the
(N,H) plane above the one for cylindrical solitons~dashed
curve!, as shown in Fig. 2~b!. This process is not strictly
attractive, and the trajectory ends up in the proximity of t
~211!-dimensional existence curve. Associated with the fi
excess fluxN, the fields exhibit persistent oscillations as
the case of longitudinal instability@5#. In Fig. 3~a! we report
the evolution of the three lowest-order transverse Fou
modes of the peak fieldu1(X50,Y) ~the field u2 is not
shown; it follows the dynamics ofu1 , remaining phase-
locked to it!. As shown, after the transient which follows th
amplification, the plane-wave and harmonic components
bilize into a regular amplitude oscillation. This implies also
a phase rotation which is conveniently described@15# by a
limit cycle in the phase space (hcosc,hsinc), whereh is the
fraction of the first spatial Fourier harmonic andc

FIG. 2. Formation of a soliton lattice from an unstable stripe:~a!
two-dimensional pattern formed atZ540. Two periodsY52Yp

54p/V are shown.~b! Field evolution in the (N,H) plane. The
existence curve of the stripes~111! and the cylindrical solitons
~211! are also shown.

FIG. 3. Evolution of a soliton stripe at phase-mathing~a54!: ~a!
transverse Fourier modes ofu1(X50,Y,Z) versus distanceZ:
plane-wave component~V50, thick solid curve!; first harmonic~V,
thin solid curve!; second harmonic~2V, dotted curve!; ~b! phase-
space representation.
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52(f1,V2f1,0), f1,nV being the phase of thenth Fourier
mode@see Fig. 3~b!#.

It can be shown that the problem of temporal instabil
@case~b!# can be treated in a similar way, with the form
substitutionr 1,2→2b1,2 in the operatorsL1,2 in Eqs. ~3!.
Therefore, the temporal breakup in waveguides potenti
lead to spatiotemporal trapping in the anomalous dispers
regime (b1,2,0, no qualitative changes occur forub2uÞ1),
as discussed in detail for the transverse case~a!. Conversely,
in the normal dispersion regime (b1,2.0) no spatial analogy
exists. The unstable modes are antisymmetric and lead
spatiotemporal wave breaking with characteristic snake
shapes@7#, followed by the radiative decay of the soliton~for
a detailed study see Ref.@16#!. In this case, fora51, the
bifurcation analysis gives the cut-off frequencyVc

5A3/2 for b15b251. Moreover the asymptotic (V!1)
gain is g5aV with a5@3(2b11b2)/5#1/2@(11s)21s(s
22)2I a#21/2, where I a5*2`

1`g(x)tanh(x)sech2(x) dx
.20.02, g(x) being the solution of the equationg924g
212gsech2 (j)5tanh(j)sech2 (j), which shows that the
antisymmetric branch exists indeed for 2b11b2.0, i.e., in
the normal dispersion regime~we leave for future analysis
the caseb1.0, b2,0, which is also physical!.

Let us consider nowthe instability of cylindrically sym-
metric solitons @case ~c!#, described by Eqs.~3! with
L1[ 1

2 (]r
21r21]r2m2r221b1V2)21 and L2[ 1

2 (]r
2

1r21]r2m2r221b2V2)2a, where we have assumed th
the perturbed modes depend on the azimuthal phasef as
exp(imf), with m integer. A purely spatial instability canno
occur in this case because our analysis shows that Eqs~3!
possess no unstable modesfor V→0 ~this is not necessarily
the case for higher-order families of cylindrically symmetr
solitons with nodes!. Conversely, the whole soliton family i
unstable with respect to temporal wave breaking (VÞ0)
both in the normal (b1,2.0) and anomalous (b1,2,0) dis-
persion regimes. The spectral gaing(V;a) calculated nu-
merically ~no explicit cylindrical solutions are known! is
shown in Fig. 4. As shown, the instability is stronger a
involves higher frequencies with anomalous dispersion@Fig.
4~b!#. However, the two dispersive regimes exhibit quali
tively different features related to the radial~shown in Fig. 5!
and azimuthal symmetry of the unstable eigenfunctio
With normal dispersion the most unstable eigenfunctio
have a doughnut radial profile and correspond tom51; see

FIG. 4. Spectral features of the temporal instability gaing for
the 211 soliton family versusa ~s52!: ~a! normal dispersion re-
gime (b15b251); ~b! anomalous dispersion regime (b15b25
21).
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Fig. 5~a!. As a consequence the temporal breaking is
pected to be accompanied by the emission of ring-sha
beams which can further induce spatial wave breaking du
their azimuthal phase dependence, leading to intricate
tiotemporal patterns. Vice versa, in the anomalous disper
regime, the unstable modes exhibit no azimuthal depende
(m50), and have bell-shaped radial profiles; see Fig. 5~b!.
Therefore, this case is reminiscent of the transverse st
instability discussed above. It is reasonable to expect tha
long-range evolution leads to a final oscillatory state arou
a lattice of two-color optical bullets@~311!-dimensional soli-
tons#, a phenomenon that will be explored in the future.

Finally, let us delineate our expectation for real expe
ments made with beams of constant physical width@4,11#,
sayxs ~i.e., X5xs /r 051). From the expression of the rea

FIG. 5. Radial profiles of the unstable modese r1 ~thick solid
curve!, ande r2 ~thin solid curve! for a51, s52, ~a! b15b251;
~b! b15b2521. For comparison we show the corresponding so
ton profile (u1 field, dashed curve!.
or
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world soliton widthxs5r 0js /Am (js5js(a) being the nor-
malized width obtained from the potential equations for t
whole family!, we obtain the additional constraintm5js

2 .
Hence, the one-parameter family can be spanned at con
beam widthr 0 (s.2), by changing the physical mismatc
according to the law Dk5m(22a/s)/zd5(4
2a)js

2(a)/(2k1r 0
2). The instability can be observed when

ever the sample is comparable or longer than the phys
gain lengthzg[10zd /(gm)520k1r 0

2/(gjs
2). For instance, a

full width at half maximum ~FWHM! physical width r 0
510 mm, andk15105 cm21 yield for a51 (sech2 soliton
with FWHM width js51.7), zg.1 cm, and a physical lat-
tice spacingyp52pr 0 /(Vjs).40 mm for V51, ~under
quasi-plane-wave excitation@11#, the beam must be muc
wider than yp). The required peak intensity isuE1u2

5uE2u2/25uu1su2/(2x2zd
2).1 GW/cm2 for x5531024

W21/2 (de f f56 pm/V in KTiPO4 @4,11#!.
In summary, we have shown that parametric solitons

dergo symmetry-breaking instabilities. The transverse
temporal breakup of one-dimensional solitons can lead
oscillations around a lattice of higher-dimensional solito
The loss of symmetry for cylindrically symmetric soliton
can occur only through temporal break-up, associated w
the growth of either bell-shaped modes, or nonazimutha
symmetric doughnut modes.
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