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We investigate the symmetry-breakingemporal or transvergeinstabilities of (1+1)- and (2+1)-
dimensional two-wave parametric solitons sustained through the interplay of diffraction and second-harmonic
generation[S1063-651X97)50911-1
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For three decades optical spatial solitons confined in thenenta). The plane-wave approach developed in Réfl]
transverse plane were commonly believed to be a prerogativ&ccounts for the dynamics of SHG, whereas the effect of
of media with cubiclike nonlinearitielsll]. A remarkable ex- confinementalong the ellipse minor axisvas not analyzed.
ception is the work carried out in Rdf2], where the possi- Here we focus on the latter aspect, and show results which
bility to achieve diffraction-free propagation via three- Serve as a guideline for ongoing SHG experiments. We make
photon interactions in quadratic medighenceforth, Uuse of the usual model for SH{3], governing the interac-
parametric solitonlswas first pointed out. The field of qua- tion of the field envelopesi; at fundamental, andi, at
dratic solitons has acquired importance only recef@yy ~ Second-harmonic frequency
also stimulated by experiments in second-harmonic genera-

tion (SHG in bulk media (2+1 dimensions and planar dup  oH 1, y1 92Uy .
waveguideg1+1 dimensions[4]. 7 = U =5V 5 = +uyul ,

Since the parametric solitons are strictly speaking solitary ! (D
waves (the model equations are not integrabla crucial 5 5
issue is their stability. Two main types of instabilities can be dup 6H 1y U uj
distinguished:(i) longitudinal instability against perturba- 9Z  sur 20 2 472 2

tions that share the soliton symmetf§]; (i) symmetry-
breakinginstabilities (reminiscent of modulational instabili- where V2= 32+ d2, with X,Y=(x,y)/r, transverse coordi-
t|e§ of pIane-waves[G]), th"’!t take. placg wh(‘e‘never”th'e nates in units of the beam widthy, Z=z/z, is the propaga-
solitons are embedded in a higher dimensional “space W'thtion distance in units of diffraction lenati=k.r2 ok
respect to the subspace in which they are local{Ze®]. For 5. ~Ngt4 Lo

the former type of problem, stability criteria have been re-=AkZd:”(kE;22k1) Kirg is the phase mismatclr=k /k,,
cently developed5], through asymptotic technique9]: TE(Zq|k1|) (t=2/V) is the normalized time in a frame
both (1+1)- and (2+1)-dimensional parametric solitons are traveling —at common group  velocity V, 12
stable in the largest portion of their existence domain in the= °k/dw?|,, 2, ¥1=5dnkK7), and y,=sgn()[ky/K].
parameter space. Moreover, the global stability collaps¢  Furthermore U= \/EZdXEla u,=z4xE,exp(Akz), where
of (2+1)- and (3+1)-dimensional parametric solitons and |E, J? are the intensities, and y=(wq/c)[2/

bullets is supported by the Liapunov-type stability analysi_S(CE'oni nZwo)]UZdeff. Two conserved quantities of Eg4)
[10]. .Con.versely, thg symmetry breaking of parametric soll-,[hat p(iay an important role in our analysis ard
tons is still an open issue, even though the problem has been ', N o o -
widely studied for cubic medif7]. Here we investigate the —J -=Hd dS 2l\l=f_de dS where S=(X,Y,T), Hq
stability of the whole one-parameter families of ground-state= 0K|Uz|*+ 3(ufu3 +c.c.— | V2u, |*— [V2Ua|?/ o+ | uysl?
planar SHG solitons. We anticipate that the development of- ¥2|Uz7|?) and Ng=|uy|?+2|u,|*> are Hamiltonian and
the instability leads either to the formation of lattices of Photon flux density, respectively. Our conclusions remain
higher dimensional solitons, or to the complete disintegratiorfiualitatively valid when a weak spatial or temporal walk-off
(radiative decayof the soliton. The transverse instability of t€rm in Eqs.(1) contribute to break the soliton symmetry.
soliton stripes belongs to the former case, whereas the dy- For cw light(i.e.,3/dT=0), Egs.(1) possess two types of
namics of temporal instabilities of botfi+1)- and (2+1)- two-color bright solitary solutions trapped in the transverse
dimensional solitons depends on the dispersive regime. Ou#ane: (1) soliton stripes confined along one dimension,
results are of great importance for recent experiments igay X; (2) solitons with cylindrical symmetry. Both
transverse pattern formation occurring via SH,12. In ~ constitute a one-parameter family of bounded solu-
particular, the filamentation of beams with strongly elliptical tions u;=u;s=(u/\o) x1(Vp) expuz) and u,=uy,
cross section§.e., pseudostripewas already observed1], = X(\up) exp(2uZ) (with u positive for spatial bright
using nonsoliton input conditionge., SHG from the funda- solitons[3]), x; , being (rea) separatrix trajectories of the
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equivalent mechanical syster{ ,+ (s/p)x; .= — dV/dxy 5,

where the potentiaV(x;,X,)=—X2— ax5+X,x3, and the
prime stands fod/dp, with p=/uX, s=0 for stripes(1) or
p=(X?+Y?), s=1 for cylindrical solitons2). Note that

the normalized soliton profiles are determined only by the

normalized parameter=o(2— 6k/u), whereas the stabil-
ity depends on botlor and « [5]. We investigate symmetry-
breaking instability of the parametric solitons, looking for
exponentially growing perturbatiores, , of the fieldsu,g o

in the form u; = u/\olx1(p) +as]exp(uz), Up=u[Xa(p)
+ay]exp(2uz). From Egs.(1) we obtain the following lin-
ear equations for the perturbations:

da; 1 92 .
—i i 5( rlA—ﬁ1ﬁ> a;—a;+x;a,+xay,
2
o da; 1 92
—md—g:§<r2A—ﬂzﬁ)az—aa2+xlal,
where — ry=ry=sgn)=1,  Bi=sgn()yi, B2

=sgn(u)oy,, and we introduced the variable=uZ and
the transverse LaplacianA=ds+4d2, with (£7,7)
=|u[(X,Y,T). We consider periodic perturbations, and
single out three different cases of physical relevarieg:
ay =[€1€) +i€ A€)]cosQrn) with B, ,=0 correspond-
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FIG. 1. (a) Spectral features of the transverse instability ggin
for the stripe family parametrized hy (6=2); (b) Eigenfunctione,
(solid) and soliton(dashed amplitude profiles fora=4 (5k=0).

The thick and thin curves correspond to the fundamental and har-
monic fields, respectively.

Let us consider firsthe transverse stripe instabilifcase
(@], for which we obtainL;=3(d;-r,0%)—1 and L,
=1 aé— r,02%)—a. The spectral gaig(Q)) is shown in Fig.
1(a) as a function ofa. In Fig. 1(b) we show the eigenfunc-
tion profiles(their absolute vertical scale is arbitrarguper-
imposed to the soliton profiles fax=4. Although Eq.(3)
admits both symmetric and antisymmetric eigensolutions

ing to a transverse instability of a parametric soliton stripe ine(é), the transverse instability gaig is always associated
a bulk medium, usually observable in quasi-cw experimentavith the symmetric brancfthis conclusion is also consistent

[11]; (b) a3 = [ €&1é) +i€1 A€)]cos@n) with 57—0, de-

scribing temporal instabilities of one-dimensional solitons

with our asymptotic analysis for smdil).
Explicit results can be obtained when the soliton is avail-

propagating in a planar waveguide with power densitiegble in closed form, i.ex; /v2=x,=(3/2)secR (&/+/2) for

L¢/E14?, L, being the usual effective width along In this
case the linear confinement alolgprevents the transverse
instability (a) from occurring; (¢) aj,=[é€1Ap,P)
+ie€1 A p,¢)]cosdr) describing temporal instabilities §2
+1)-dimensional solitons in cylindrical coordinatép,q).
Finally, note that for cw or quasi-cw soliton stripes in bulk,
the transverséa) and temporalb) instabilities might in prin-
ciple compete.

Substituting these expressionsaf, in Egs.(2), we ob-
tain the following (4x4) real eigenvalue problem for the
vectore= (e, ,€)" with € =€y ,ezm)T:

()

wherel ,=diag(l,,l,), with | ,=diag(1¢), andL, , are lin-
ear operators that depend on the specific probl@m(c).
From Eqg. (3), we obtain the decoupled problenfe,=

- IZ’ZM “M™ ¢, (and the adjoint problem fa;) that must be
solved for unstabldwith positive real paiteigenvalues.

To this end, we first construct the whole families of soliton
profilesx; ;=X op; @), solving the one-dimensional poten-
tial equations by means of the relaxation methb8)]. Then,
we solve Eq.(3) by means of the inverse iteration method
[13] to find the spectral dependency of the gain

0
M+

_M_
0

Lixx, X

e—Nl,e=0;M*= L,

X1

a=1. For B,=p8, (Ly=L,), the bifurcation point(i.e.,
g=0) in Eq. (3) yields the instability spectral range<Q}
<Q. where the cut-off frequenc§).=\/5/2. Moreover, in
the limit Q <1, Eq.(3) is fulfilled by the asymptotic expres-
sion g=aQ with a=(r;+2r,)¥42(1-20)2%4+(1
+0)?] Y2 with 1= [T Zf(x)sech(x) dx=—0.15,f(x) be-
ing a solution of the equationf”—4f—6fsech (&)
=secl (&). This result confirms that the symmetric branch
requiresr;+2r,>0 for o~2.

Once established that the soliton stripes are transversally
unstable, a crucial issue is their long-range evolutions.
Whenever the eigenfunction profiles follow those of the bell-
shaped soliton, the dynamics of the instability process shows
no significant changes along the trapping dimension and re-
mains essentially one dimensional. Under these conditions it
is reasonable to expect qualitative similaritigsg., recur-
renceg with the evolution for modulational instability of
plane waves. For instance, this occurs in cubic méti,
where recurrent or quasirecurrent plane-wave evolutions take
place[15]. In SHG, however, the problem of long-range evo-
lutions of plane waves is complicated by the large number of
effective frequency modes, and henoe similarities with
solitons can be envisageHere we investigate the nonlinear
stage of soliton symmetry breaking by integrating numeri-
cally Egs. (1) with the initial condition u; X,Y,Z=0)
=Uj »(X) + €(X)cosdyY), whereQy= JrQ and the seed

=g(Q;a)=Rd\] associated with bounded eigenfunctions €(X) is a Gaussian-like perturbation with peak amplitude
which fix the spatial shape of the growing perturbations. Be-€(0)?~10"2 uZ »(0).
low we report results obtained far~2 (or |[Ak|/k;<1). A typical result, obtained at phase matchifig=0 (a=4)
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FIG. 2. Formation of a soliton lattice from an unstable strijg:
two-dimensional pattern formed @&=40. Two periodsY=2Y,
=47/ are shown.b) Field evolution in the {,H) plane. The
existence curve of the stripgd+1) and the cylindrical solitons
(2+1) are also shown.

is shown in Fig. 2: the stripe breaks up into a periodical
sequence of spots, forming a lattice of trapped waves, whic
are naturally expected to 2+ 1)-dimensional solitonfFig.
2(a)]. We verified this conjecture by drawing in Figi2 the
evolutions of the contributions to the invariants, namily

w rYpl2 o Ypl2
=77 N dydXandH= /"7 %, 2Ha dYdXrelated

to any single spot within one period,=2m/y. As the

(a) (b

i

!

i i
W A
Il
- ///;//I/I W‘ﬁ;}’/%”;’:“ 20 2 "I"lg{//,/," '
L g i

e
0

o ’V (
. | ""

o)
i)

ENCYQ 05

FIG. 4. Spectral features of the temporal instability ggifor
the 2+1 soliton family versusy (6=2): (a) normal dispersion re-
gime (B:=B,=1); (b) anomalous dispersion regimes{=B,=
-1).

=2(¢10— P10, P1nq being the phase of thath Fourier
mode[see Fig. 8)].

It can be shown that the problem of temporal instability
Fcase(b)] can be treated in a similar way, with the formal
substitutionr; ,— — B, , in the operatord.; , in Egs. (3).
Therefore, the temporal breakup in waveguides potentially
lead to spatiotemporal trapping in the anomalous dispersion
regime (31,<0, no qualitative changes occur fg8,|#1),
as discussed in detail for the transverse ¢aseConversely,

instability develops, the spots try to evolve toward the stablén the normal dispersion regimg( ,>0) no spatial analogy

state of the system, radiating part of the energy aldr(ge.,

N andH decreases This behavior is allowed whenever the
existence curve of the stripe famifgotted curvglies in the
(N,H) plane above the one for cylindrical solitofgashed
curve, as shown in Fig. @). This process is not strictly

exists The unstable modes are antisymmetric and lead to
spatiotemporal wave breaking with characteristic snakelike
shape$7], followed by the radiative decay of the solitGior
a detailed study see R€f16]). In this case, fora=1, the
bifurcation analysis gives the cut-off frequency).

attractive, and the trajectory ends up in the proximity of the=/3/2 for 8,=B,=1. Moreover the asymptotic{{<1)

(2+1)-dimensional existence curve. Associated with the fina
excess fluxN, the fields exhibit persistent oscillations as in
the case of longitudinal instabilify6]. In Fig. 3a) we report
the evolution of the three lowest-order transverse Fourie
modes of the peak fieldi;(X=0,Y) (the field u, is not
shown; it follows the dynamics ofi;, remaining phase-
locked to iY. As shown, after the transient which follows the

gain is g=aQ with a=[3(28,+ B,)/5]Y4(1+ )%+ (o
=227 where 1,=["%g(x)tanh)secR(x) dx
=-—0.02, g(x) being the solution of the equatiog’’—4g
L 12gseck (&) =tanh()sech (£), which shows that the
antisymmetric branch exists indeed foB2+ 8,>0, i.e., in
the normal dispersion regim@ve leave for future analysis
the caseB;>0, 8,<0, which is also physical

amplification, the plane-wave and harmonic components sta- | ot ys consider novihe instability of cylindrically sym-

bilize into a regular amplitude oscillation. This implies also a
a phase rotation which is conveniently descrip@f] by a
limit cycle in the phase space;€osy, sing), wherey is the
fraction of the first spatial Fourier harmonic ang
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FIG. 3. Evolution of a soliton stripe at phase-mathiag-4): (a)
transverse Fourier modes af;(X=0,Y,Z) versus distanceZ:
plane-wave compone€)=0, thick solid curvg first harmonic((2,
thin solid curve; second harmoni€2(), dotted curve (b) phase-
space representation.

metric solitons [case (c)], described by Eqgs.(3) with
Li=3(5+p *9,~m?p 2+ B:0%) -1 and L,=3(3’

+p ta,— mzp*£+ B>0?) — a, where we have assumed that
the perturbed modes depend on the azimuthal pliase
exp(img), with m integer. A purely spatial instability cannot
occur in this case because our analysis shows that (Bgs.
possess no unstable modes () — 0 (this is not necessarily
the case for higher-order families of cylindrically symmetric
solitons with nodes Conversely, the whole soliton family is
unstable with respect to temporal wave breakify+0)
both in the normal 8, ,>0) and anomalousf; ,<0) dis-
persion regimes. The spectral gaif();«) calculated nu-
merically (no explicit cylindrical solutions are knownis
shown in Fig. 4. As shown, the instability is stronger and
involves higher frequencies with anomalous disper$kig.
4(b)]. However, the two dispersive regimes exhibit qualita-
tively different features related to the radighown in Fig. 5
and azimuthal symmetry of the unstable eigenfunctions.
With normal dispersion the most unstable eigenfunctions
have a doughnut radial profile and corresponante 1; see
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world soliton widthxg=r &/ (£s= &4(c) being the nor-
3t @ | 38 (b) malized width obtained from the potential equations for the
s \ whole family), we obtain the additional constraipi= fg.
! ' Hence, the one-parameter family can be spanned at constant
) beam widthry (0=2), by changing the physical mismatch
\ . according to the law Ak=u(2—alo)lzg=(4
o o R, —a)&2(a)/(2kqr3). The instability can be observed when-
0 0 ever the sample is comparable or longer than the physical
gain lengthzy=10z4/(gu) = 20k,r3/(g£3). For instance, a
FIG. 5. Radial profiles of the unstable modgs (thick solid  full width at half maximum (FWHM) physical widthr,

AMPLITUDES

curve, and e, (thin solid curve for a=1, 0=2, (8 B;=B,=1; =10 um, andk;=10° cm™?! yield for a=1 (secR soliton
(b) B1=B,=—1. For comparison we show the corresponding soli-with FWHM width £,=1.7), zgzl cm, and a physical lat-
ton profile (U, field, dashed curye tice spacingy,=27ro/(Q&)=40 um for Q=1, (under

guasi-plane-wave excitatiofl1], the beam must be much

Fig. 5a). As a consequence the temporal breaking is exWider thany). Thezrequwed peak intensity i$E,|*
pected to be accompanied by the emission of ring-shapet |Ez2|*/2=|u1s|/(2x°zg)=1 GWlent for y=5x10"*
beams which can further induce spatial wave breaking due t9/~ ** (dery=6 pm/V in KTiPQ, [4,11)).
their azimuthal phase dependence, leading to intricate spa- In summary, we have shown that parametric solitons un-
tiotemporal patterns. Vice versa, in the anomalous dispersioflergo symmetry-breaking instabilities. The transverse or
regime, the unstable modes exhibit no azimuthal dependendeémporal breakup of one-dimensional solitons can lead to
(m=0), and have bell-shaped radial profiles; see Fi§).5 Oscillations around a lattice of higher-dimensional solitons.
Therefore, this case is reminiscent of the transverse strip&he loss of symmetry for cylindrically symmetric solitons
instability discussed above. It is reasonable to expect that tHean occur only through temporal break-up, associated with
long-range evolution leads to a final oscillatory state aroundhe growth of either bell-shaped modes, or nonazimuthally
a lattice of two-color optical bullefg3+1)-dimensional soli- ~Symmetric doughnut modes.
tong], a phenomenon that will be explored in the future.

Finally, let us delineate our expectation for real experi- We thank D. E. Pelinovsky, G. Assanto, and G. |. Stege-
ments made with beams of constant physical widtiil], = man for useful discussions. A.V.B. acknowledges a financial
sayX, (i.e., X=x¢/ro=1). From the expression of the real- support of the Australian Research Council.

[1] R. Y. Chiao, E. Germire, and G. Townes, Phys. Rev. L. 35, 25 (1996. To our knowledge, the snake-instability of
478 (1964; 14, 1056(1965. bright solitons was not demonstrated.

[2] Y. N. Karamzin and A. P. Sukhorukov, Pis'ma Zh. Eksp. Teor. [9] D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, Phys.
Fiz. 20, 734 (1974 [JETP Lett.20, 339 (1974]; zZh. Eksp. Rev. E53, 1940(1996.

Teor. Fiz.68, 834(1975 [Sov. Phys. JETR1, 414 (1976)]. [10] A. A. Kanashov and A. M. Rubenchik, Physica ) 122
[3] A. V. Buryak and Yu. S. Kivshar, Opt. Letll9, 1612(1994); (1981); L. Berge, V. K. Mezentsev, J. J. Rasmussen, and J.
Phys. Lett. A197, 407 (1995; L. Torner, D. Mazilu, and D. Wyller, Phys. Rev. A52, R28(1995; S. K. Turitsyn, Pis’'ma
Mihalache, Phys. Rev. Let77, 2455 (1996; H. He, W. J. Zh. Eksp. Teor. Fiz.61, 458 (1995 [JETP Lett.61, 469

Werner, and P. D. Drummond, Phys. Rev5E 896 (1996; (1995].
G. |. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantuni11] R. A. Fuerstet al,, Phys. Rev. Lett78, 2756(1997).
Electron.28, 1691(1997. [12] K. Dholakiaet al, Phys. Rev. E54, R3742(1996.
[4] W. E. Torruellaset al, Phys. Rev. Lett74, 5036 (1995; R. [13] W. H. Presset al, Numerical RecipesCambridge University
Schiek, Y. Baek, and G. |. Stegeman, Phys. Rew3E1138 Press, Cambridge, 199(. 377.
(1996. [14] J. M. Soto-Crespo, E. M. Wright, and N. N. Akhmediev, Phys.
[5] D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, Phys. Rev. A 45, 3168(1992.
Rev. Lett.75, 591 (1995; A. V. Buryak, Yu. S. Kivshar, and [15] M. J. Ablowitz and P. A. ClarksorSolitons, Nonlinear Evo-
S. Trillo, ibid. 77, 5210(1996. lution Equations and Inverse Scatterifi@ambridge Univer-
[6] S. Trillo and P. Ferro, Opt. LetR0, 438 (1995. sity, Cambridge, 1991 pp. 127-152; S. Trillo and S. Wab-
[7] E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. nitz, Opt. Lett. 16, 986 (1991); H. C. Yuen and W. E.
Rep.142 103(1986. Ferguson, Phys. Fluidal, 2116(1978.

[8] Transverse soliton break-up is observed in photorefractives: AL16] A. De Rossi, S. Trillo, A. V. Buryak, and Yu. S. Kivshar, Opt.
V. Mamaev, M. Saffman, and A. A. Zozulya, Europhys. Lett. Lett. 22, 868(1997).



